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Any changes that have been made in the full proposal compared to the pre-proposal The requested funds have
been slightly increased (+3000€, +1.3% compared to the pre-proposal) to account for the administrative management
costs. Other than that, no specific change has been made that could modify the eligibility of the current project since
drafting the pre-proposal.

1 Proposal’s context, positioning and objective(s)

Applications of closed-loop flow control have epic proportions: drag reduction, lift increase, mixing enhancement, or noise
mitigation. It is however challenged by strong nonlinearities, partial state information, parametric dependencies, or time
delays. The present project aims at tackling one of these problems, the parametric dependencies. It forms the first step
in a long research program crafted by the principal investigator.

1.1 Objectives and research hypothesis

Deep learning has a transformative impact in many fields. Current state-of-the-art for controlling complex systems is
formed by deep reinforcement learning (DRL) methods. The most prominent examples include Alpha Go Zero [57] for
board games or Alpha Star [63] for the real-time-strategy game StarCraft Il. Recently, DeepMind has also been successful
in controlling the nuclear fusion plasma in a tokamak [20]. DRL applied to flow control is however a burgeoning field
with contrasted successes, mostly on the cylinder flow [46, 59, 23]. A literature review of applications in fluid dynamics is
provided in [24]. Despite these achievements, DRL still is too expensive, too complicated or not understood well enough
for practical applications. In situations of industrial interest, the gold standard is formed by methods from linear optimal,
robust or model-predictive control. While having a long and well-established history, these techniques still suffer from
certain limitations, most notably when parametric dependencies need to be accounted for. Recent advances in data-driven
approximations of high-dimensional linear operators and differential geometry may provide a well-grounded theoretical
framework to overcome these limitations. This will be explored and benchmarked in the present project. Although the
methodology proposed is fairly general, a particular emphasis will be given to control-oriented reduced-order models.

Objectives of the project and research hypothesis Many practical models in engineering sciences belong to the class
of generalized linear models

y=Kx+e¢

with y e C", x € C" and K € C™*" a linear mapping from x to y. In system identification, it includes for instance
OKID where y is the response of the unknown linear system, K a Toeplitz matrix constructed from the input sequence
and x is the vector of unknown Markov parameters of the system. Similarly, linear stochastic estimation or the linear
deconvolution problem can also be cast as generalized linear models.

Of interest to us are situations where K is unknown. Given training pairs (x;, y;), an ordinary least-squares regression
can be formulated to identify K. Yet, for typical engineering problems x and/or y are high-dimensional vectors. Hence,
we are unlikely to have sufficient data to obtain a good statistical estimate of K. It can however be assumed to be low-



rank, an assumption often verified for high-dimensional dissipative systems. A good estimate can be obtained by solving
the following rank-constrained problem

minimize |[M”2(Y — PQ"X)||?
P.,Q

subjectto P'MP =1,

where X and Y are data matrices, M a positive-definite mass matrix, and r the rank of the desired approximation.
Although non-convex, these rank-constrained problems admit a closed-form solution [19, 26, 38]. Most modal decom-
positions also fall into this framework. POD and PCA are recovered if X =Y and P = Q. Similarly, DMD [54, 55] is
obtained for y; = x;;1. One major objective of this project is thus to unify most data-driven linear models (i.e.
modal decompositions and system identification techniques) into this framework.

Another key objective is to explore the combination of this reduced-rank regression framework with recent advances in
differential geometry to propose a methodology for parameterizing data-driven linear models. Low-rank modal decompo-
sitions such as POD, BPOD or DMD are often used to formulate a Galerkin expansion of the state vector of the system.
A reduced-order model can then be obtained by projecting the governing equations onto the span of these modes, or
identified from time-series of the modes’ amplitudes as in Galerkin regression [39, 38, 14]. In either case, the resulting
low-order model has a limited dynamical range, e.g. its validity as the Reynolds number varies is very narrow. This
results from the inability of these decompositions to account for the spatial deformation of the modes as the parameters
of the system change. Similar drawbacks are encountered for classical system identification techniques such as ERA [32]
or N4SID [61]. This is particularly detrimental in feedback control applications. As an example, the performances of
the low-dimensional LQG controller designed for the canonical cylinder flow at Re =50 rapidly degrade as the Reynolds
number is varied by even a few percent. Accounting for these parametric dependencies is thus of paramount importance.

One benefit of the reduced-rank regression framework is that the singular value decomposition of the matrix K=UZ V"
can easily be computed. Given models obtained at different operating conditions p;, i.e. K= K(p;), the matrices U;, &;
and V; can be interpolated at a new operating condition. Yet, U; and V; being orthogonal matrices, this interpolation
cannot however proceeds in an entry-wise way. To preserve this fundamental structure, it needs to occur on the Grassmann
or Stiefel manifolds [69]. These are equipped with a natural notion of distance and gradient which can be leveraged to
design efficient sampling strategy in the parameter space. High-order interpolation schemes on these manifolds have
moreover been proposed by Ralf Zimmerman [69]. Combining reduced-rank regressions and tools from differential
geometry, another key objective is thus to develop a natural framework for parameterizing data-driven linear
models.

Finally, an aspect often overlooked in data-driven models is their robustness to the training data and their sensitivity to
the operating conditions. A first step in this direction was achieved by Hay et al. [25], deriving the parametric sensitivity of
POD modes and POD eigenvalues. Including the sensitivity of the modes to the projection basis in a Galerkin projection
procedure was shown to increase the range of validity of the reduced-order model. POD being a special instance of
the more general framework presented earlier, one of the final aim of this project is thus to generalize the
sensitivity analysis from [25] to all models falling into the reduced-rank regression framework. Regarding the
model's robustness, a methodology based on ensembling and bagging was proposed by Sashidhar & Kutz [53], specifically
for DMD. Their ensembling procedure however relies on simple averaging not necessarily consistent with the low-rank
structure of the model. Note that each model generated during this ensembling can be associated with a point on the
Stiefel manifold. Once again, this manifold provides a natural framework in which to formulate the different statistical
objects needed to quantify the models uncertainties while preserving their fundamental low-rank structure. Leveraging
once again the properties of the Stiefel manifold, the last theoretical objective of this project is thus to propose
a well-grounded methodology to equip data-driven linear models with uncertainty quantification capabilities.
This last aspect can be of utmost importance when trying to control a nonlinear system with an otherwise imperfect
reduced-order model.

Technical barriers Data-driven models have emerged as a powerful paradigm over the past decade. However, explic-
itly accounting for their parametric dependencies in a consistent, rigorous, and computationally efficient way still is
challenging. Yet, exploiting properties of the Grassmann and Stiefel manifolds (the mathematical objects at the core of
this project), Zimmermann [67, 68, 69] has recently proposed a set of methods to perform high-order interpolation on
these manifolds. These theoretical and algorithmic developments served as the basis for two proofs of concept by the
principal investigator and collaborators. In [40], the Grassmann manifold was used to parameterize the deformation of
the instability modes into the POD ones for the canonical two-dimensional cylinder flow. In [52], parameterization of
DMD-based state observers for an airfoil in transonic buffeting conditions with a varying angle of attack was conducted



on the Stiefel manifold. Despite the novelty of the mathematical approach undertaken in this project, very few barriers,
whether technical or theoretical, have thus been identified. The few that have relate to the proper definition of statistical
quantities on the Stiefel manifold involved for uncertainty quantification. However, these potential barriers concern only
a single task in this project.

Expected results Focusing on data-driven models for control purposes, the main theoretical and numerical develop-
ments to be conducted in this project are

e Implementation of current state-of-the-art techniques for linear optimal control of high-dimensional systems [51,
9, 56] to establish baseline performances against which to compare the data-driven models developed later on.

e Development of a theoretical framework based on reduced-rank regression to unify most modal decomposition
and linear system identification techniques used in our community at large.

e Combine this theoretical framework with recent advances in differential geometry to propose a well-grounded
methodology for parameterizing data-driven linear models. It also includes the derivation of the parametric
sensitivity of the different models to enable high-order interpolation for the parameterization.

e Exploit ensembling and bagging techniques from statistical learning to obtain more robust and more generalizable
data-driven models as well as providing some elements to quantify their prediction uncertainties.

Each of these major actions constitutes one work package described later in the document.

Regarding the outcomes and results expected by the end of the project, different objectives are being pursued.

e Despite the wide adoption of data-driven models, even more so now with the large number of publications
using deep learning techniques, very few quantitative benchmarks on well described test cases and reference
implementations are available. Using the two-dimensional cylinder and shear-driven flows as examples, one of our
objectives is to rigorously establish these baseline performances and provide open-access implementations of the
best performing models for other researchers to objectively compare the performances of their new approaches.

e As a proof of concept, the control strategy proposed in this work (including the parameterization and uncertainty
quantification) will be applied to a three-dimensional flow past a slender body in a chaotic regime [49, 11, 50]. The
objective is to showcase the capabilities of the proposed methodology to a flow configuration of both academic
and industrial interest.

e Finally, all of the numerical developments will be integrated either in nekStab, an open-source toolbox for large-
scale instability and bifurcation analysis for the spectral element solver Nek5000, or in an another open-source
toolbox dedicated to data-driven linear modeling that will be developed during the project.

Theoretical and numerical results will be published in top-tier applied mathematics or fluid dynamics journals, while the
different toolboxes will have a companion paper published in the Journal of Open Source Software.

1.2 Originality and relevance in relation to the state of the art

Parameterizing reduced-order models, even for linear systems, is a long standing problem in computational sciences. In
fluid dynamics, one major reason is the continuous deformation of the coherent structures forming the backbone of the
reduced representation as the operating conditions change. One approach is to collect snapshots of the dynamics of
the system at different points in the parameter space. After stacking all these snapshots into a data matrix, a low-rank
basis globally valid over the whole range of sampled operating conditions is typically obtained using Proper Orthogonal
Decomposition. It is then used to build a parameterized reduced order model based on a Galerkin projection of the
governing equations. This approach is typically known as Reduced Basis.

In this greedy approach, the dimension of the reduced basis is closely related to the concept of the Kolmogorov n-width.
It provides an upper bound for the dimension of the Euclidean space needed to embed the solution manifold for a given
tolerance. Yet, this manifold might be of much lower topological dimension than its embedding dimension. Reduced
basis techniques thus introduce artificial degrees of freedom in the reduced-order model to compensate for the mismatch
between the topological dimension of the solution manifold and the dimension of its embedding subspace. Introducing
these artificial degrees of freedom may however have a detrimental effect on the stability and accuracy of the reduced-order
model as discussed by Lee & Carlberg [37] or more recently by the principal investigator in [14]. Instead of using a global
basis, an alternative is to construct multiple local ones (i.e. one at each point sampled in the parameter space) along with
an interpolant. Doing so, the dimension of the low-rank basis (and hence of the reduced-order model) tends to be closer
to the topological dimension of the solution manifold. A first step in this direction was achieved by Amsallem & Farhat
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[1, 2] using the so-called Grassmann manifold for projection-based reduced-order models for aeroacoustic applications.
Being a Riemannian manifold, one major benefit of using the Grassmann manifold is that it is equipped with a natural
notion of distance. The distances between low-rank bases associated to different operating conditions can be used to
determine the next point to be sampled in the parameter space or to construct the interpolant. Given only two points
on this manifold, this interpolation reduces to subspace angle interpolation. If more points are available, a higher-order
interpolant can be obtained using e.g. Lagrange interpolation. As discussed in Amsallem & Farhat [1, 2], this interpolant
needs to be constructed within the tangent subspace of the manifold. However, one drawback of the Grassman manifold
is that it is primarily concerned with the span of the low-rank basis rather the basis itself. Two orthogonal matrices X
(e.g. POD basis) and Y (e.g. DMD basis) with the same span correspond to the same point on the Grassmann manifold.
As such, physical interpretation of the low-dimensional state vector might be lost upon interpolation of the low-rank bases.

If the interpretability of the low-rank basis is equally important, two alternatives can be considered. In the first one, the
interpolation still is conducted on Grassmann manifold. After having interpolated the low-rank bases, these are then re-
aligned with respect to a reference point by formulating an orthogonal Procustes problem. A second alternative, advocated
for by Zimmermann [67, 68, 69] is to replace the Grassman manifold by the Stiefel one. Two orthogonal matrices X (e.g.
POD basis) and Y (e.g. DMD basis) with the same span no longer correspond to the same point on the Stiefel manifold,
unless X =Y (compared to span(X) =span(Y) for the Grassmann manifold). For theoretical reasons, interpolation on
the Stiefel manifold is more computationally intensive than on the Grassmann one. Yet, if the gradient of the low-rank
bases with respect to the operating conditions is available, an accurate cubic Hermite interpolant can be constructed
[67, 68, 69], leading to more accurate estimates for new operating conditions. In 2015, Benner, Gugercin and Wilcox [7]
published a survey of projection-based model reduction methods for parametric dynamical systems with an exhaustive
list of references, including both the reduced basis approach and the matrix manifold interpolation techniques. A slightly
more recent literature review on the subject has also been conducted by Zimmermann, Peherstorfer and Wilcox [70].

Compared to projection-based reduced-order models, the literature on parameterized data-driven models for dynamical
systems is more recent and much scarcer. Despite the well-grounded theoretical framework described in the previous
paragraph, most of the works on parameterized data-driven reduced-order models have turned their attention to deep
learning techniques. A large fraction of this body of work is moreover dedicated to implicitly parameterizing turbulence
models, whether RANS-like or subgrid-scale models for LES. For relatively simple dynamical systems, Kalia et al. [33]
have used auto-encoder networks to identify parameterized normal forms based on simulated data of relatively simple
dynamical systems. Based on a probabilistic point of view, Morton et al. [44] have proposed to use variational auto-
encoders conditioned on the parameters of the systems to construct sequential generative models of fluid flows. They
illustrated their approach using the flow past two side-by-side co- or counter-rotating cylinders with a two-dimensional
parameter space.

The wealth of deep learning models published recently in the fluid dynamics literature is only paralleled by the rising
popularity of Dynamic Mode Decomposition [54, 55] and its variants. These include Exact DMD [60], Extended DMD
[64], online DMD [66], compressed DMD [12, 6], DMD with control [48], Recursive DMD [45], optimized DMD [3, 53],
Forward-Backward DMD [18], Total Least Squares DMD [28], high-order DMD [36], ioDMD [8], sparsity-promoting DMD
[31], Bayesian DMD [58], multi-resolution DMD [34], randomized DMD [10, 22], kernel DMD [65, 27], low-rank DMD
[26], consistent DMD [4], physics-informed DMD [5], and a few more. Despite this exhaustive list, none of these groups
have addressed the problem of parameterizing these data-driven models. To the best of our knowledge, a similar remark
about the lack of parameterization holds true for most linear system identification techniques proposed in the literature.
These include EigenRealization Algorithm [32], OKID [62], N4SID [61], MOESP [30], CVA [35] and others.

Leveraging the theoretical framework being developed for parameterizing projection-based reduced-order models, the aim
of the CONMAN project is to extend it to data-driven models, with a particular emphasis on control-oriented applications.
As discussed in §1.1, a first step to achieve this goal is to unify most data-driven linear and system identification techniques
in the common reduced-rank regression framework. Preliminary work in this direction is currently being conducted
by the principal investigator of the project in collaboration with Steven Brunton from the University of Washington
(Seattle, USA). Using the Grassmann and Stiefel manifold interpolation techniques developed by Amsallem [1, 2] and
Zimmermann [67, 70], a second step is to develop a priori error estimates and parameter space sampling strategies to
reduced the offline computational cost of building these parameterized models. Preliminary results have already been
obtained for the transients and post-transients dynamics of the canonical cylinder flow at Re=100 in [40] and for an airfoil
in transonic buffeting conditions with varying angle of attack in [52] by the principal investigator and his collaborators.
Finally, following Sashidhar & Kutz [53], the project also aims at equipping these data-driven models with uncertainty
quantification capabilities. This is of utmost importance in practical applications, particularly when imperfect models are
used for state- or output-feedback control. Focusing on fluid dynamics applications, these data-driven control-oriented
models will be tested and validated on two standard benchmarks, namely the canonical cylinder and shear-driven cavity



flows with varying Reynolds numbers. To showcase the utility and performances of these models on a realistic flow
configuration, the flow past a three-dimensional slender body in a chaotic regime will be considered. This particular flow
configuration has already been studied by Rigas et al. in [49, 11, 50, 15]. Along with the unification, parameterization
and uncertainty quantification methodologies, we expect this project to provide the much needed, yet currently lacking,
benchmark performances against which to compare more advanced control strategies, most notably those based on deep
learning techniques.

1.3 Methodology and risk management

The project runs for four years. The main participants are Jean-Christophe Loiseau (JCL), a post-doctoral researcher, and
a Ph.D. candidate. Professor Robinet, head of DynFluid, will provide feedback about project management and student
supervision, while uncertainty quantification aspects will be investigated with the help of Xavier Merle. The project also
benefits from ongoing collaborations with Professor Steve Brunton. Moreover, JCL plans to defend his Habilitation a
diriger des recherches shortly after the start of the project. This will ease the supervision of the Ph.D. candidate. If
the defense is delayed or the supervision by the principal investigator is denied by the Arts et Métiers doctoral school,
Professor Robinet will assure the administrative supervision of the Ph.D. student.

1.3.1 Overview of the project’s organization

The project is structured in four technical work packages (WP1 to WP4) and two organizational ones (WPO and WP5).
The organizing tasks are devoted to project coordination (WPOQ) and scientific communication and dissemination (WP5).
A Gantt diagram describing the planning of the project over the course of the four years is provided below.

Planning
gL flasx Year 1 Year 2 | Year 3 |  Year4
< Post-doctoral researcher HEEEER
PRD candidate NARNARRARNARNARNARNARNREA
Task 1.1 — Adjoint of the Direct-
Adjoint
Task 1.2 — Adjoint of the Adjoint-
1 Direct
Task 1.3 — Balanced Proper
Orthogonal Decomposition
Task 1.4 — Optimal actuator and
sensor placement
Task 2.1 — Unifying framework for
data-driven models
Task 2.2 — Development of an
o |Open-source toolbox
Task 2.3 — Benchmarking data-
driven models
Task 2.4 — Data-driven sensors and
actuators placement
Task 3.1 — Parameterization of
BPOD
3 Task 3.2 — Parameterization of
ADA and AAD
Task 3.3 — Parameterization of
data-driven models
Task 4.1 — Sensitivity of data-
driven models
Task 4.2 — UQ on the Stiefel man-
4 |.
ifold
Task 4.3 — Application to a 3D
slender body flow

Table 1. Gantt diagram associated with the four technical work packages for the duration of the project.



In the rest of this document, the project is assumed to start on January 1st 2023. Contacts with possible candidates for
the post-doctoral position will be established during the early summer 2022. Given the academic calendar, a successful
Ph.D. candidate will be recruited in September 2023. The Ph.D. thesis duration covers the last three years of the project.

1.3.2 Description by work package

In this section, each work package (objectives, tasks, tentative duration, and outcomes) is described. A clear overview
of the different milestones and deliverable is also given at the end.

WP 0 - Project management

Leader Jean-Christophe Loiseau
Contributing participants All participants
Duration 4 years

This work package deals with the coordination of the project and its management. Its main goal is to ensure good
coordination and transfer of knowledge between the participants. All participants will meet twice a month to discuss
progress made and difficulties encountered. Thrice a year, meetings with Jean-Christophe Robinet will take place. Their
goal is to ensure that the project does not deviate from its tracks and discuss any problem related to management or
human resources. The main deliverable will be the biannual activity and final reports.

WP 1 - Baseline models

Leader Jean-Christophe Loiseau
Contributing participants Principal Investigator, Post-doctoral researcher
Duration 12 months

The parameterization strategy proposed herein applies to a wide range of linear models. Yet, our main focus is on control-
oriented data-driven models. To assess the performances and robustness of these models, reference data must be obtained.
Running over the first year of the project, this WP deals with the implementation of state-of-the-art linear methods
for flow control. These developments will happen within nekStab, an open-source toolbox for large-scale stability and
bifurcation analysis. Relying on the spectral element solver Nek5000, it is being developed by the principal investigator.
Of interest for this work package are Nek5000's capabilities in solving the direct and adjoint linearized Navier-Stokes
equations and the coupling with nekStab's large-scale eigenvalue and singular value solvers.

Consider a linear time-invariant dynamical system

x=Ax+ Bu
y=Cx+Du

where x € R" is the state vector, u € RP represents the p input to the system, and y € R? the g output. A feedback
control law of the form u= —Kx can stabilize the otherwise unstable dynamics. For linear quadratic regulators (resp.
linear quadratic estimator), synthesizing K € R?*" (resp. L€ R"* ) requires the solution of an algebraic Ricatti equation.
Due to the sheer size of the discretization in fluid dynamics, using a direct Ricatti solver is however computationally
intractable, even for moderately complex flow configurations. Two main strategies [51, 9, 56] have been proposed to
overcome this limitation. The implementation of these strategies forms the main tasks of this work package.
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Task 1.1 — Adjoint of the Direct-Adjoint (ADA)

Assigned to Post-doctoral researcher (100%)
Duration 4 months
Risk Low

In a feedback control problem, synthesizing the control gain K € RP*" requires the solution of an algebraic Ricatti
equation. A first step toward high-dimensional systems was achieved by Bewley et al. [9], introducing the Adjoint of the
Direct-Adjoint. Originally limited to single input-single output (SISO) systems or decentralized control schemes, ADA has
been extended by Semeraro & Pralits [56] to accommodate for multiple input and multiple output. The aim of this task
is to implement the ADA algorithm [56] into nekStab. All the computational routines are already available. Hence, the
implementation should be relatively fast. In the rest of this project, controllers synthesized using ADA, either with the
LQR (a special case of H; synthesis) or robust control (Ho, synthesis) paradigms, will serve as our baseline references
to evaluate the performances of the data-driven models developed in WP2 to WP4.

Task 1.2 — Adjoint of the Adjoint-Direct (AAD)

Assigned to Post-doctoral researcher (100%)
Duration 4 months
Risk Low

For optimal performances, feedback control requires full-state information. Yet, in practical applications, only limited
sensor measurements are available and the state x of the system needs to be estimated. As for the control synthesis,
the Kalman gain L € R"*9, enabling the estimation of the state x from the limited measurements y, is solution to a
Ricatti equation. Following [56], a similar approach, the Adjoint of the Adjoint-Direct, can be used for high-dimensional
systems. In parallel to Task 1.1, the goal of the present one is the implementation of AAD into nekStab. As for ADA,
all the computational components are already available to the project, and state estimators obtained by AAD will serve
as our baseline references.

Task 1.3 — Balanced Proper Orthogonal Decomposition

Assigned to Principal Investigator (100%)
Duration 2 months
Risk None

BPOD [51] aims at approximating balanced truncation [43], otherwise intractable for large-scale systems. BPOD does
not try to approximate directly the high-dimensional LQR and LQE gain matrices. Instead, it first builds a reduced-
order model of the system based on snapshots from direct and adjoint impulse response simulations. Relying on a low-
rank approximation of the cross Gramian, BPOD ensures that the constructed reduced-order model captures most of the
input-output properties of the original high-dimensional system. The reduced-order model being of modest dimension, a
standard Ricatti solver is then used to compute the linear quadratic regulator and estimator for feedback control purposes.

In its current form, nekStab already contains all the tools and routines needed for BPOD. Hence, the implementation
of BPOD will be fast. Because of its good theoretical and computational properties, combined with its relative ease of
implementation, BPOD will not only be one of the baseline models for comparisons later in the project but also serves
as a fallback strategy if Tasks 1.1 and 1.2 are delayed due to unforeseen difficulties.

Task 1.4 — Optimal sensor and actuator placement

Assigned to Principal investigator (50%) and Post-doctoral researcher (50%)
Duration 4 months
Risk Moderate

In the previous tasks, the matrix B describing the actuators and the matrix C describing the available measurements are
fixed a priori. Actuators and sensors are determined prior to reduced-order modeling, either based on technical constraints
or physical knowledge about the system. If very few sensors or actuators can be afforded, fine-tuning their locations or
parameters can provide the extra authority needed to control the system at a reduced cost. It can be formulated as an
optimization problem and solved using various techniques, e.g. gradient-based optimization [16], evolutionary algorithms
[21] or simple heuristics [29]. To our knowledge, the current state-of-the-art method has been proposed by Chen & Rowley
[16] using gradient-based minimization of the Hy norm of the controlled system. To date, this approach has only been
illustrated on relatively simple one-dimensional partial differential equations for which the Ricatti and Lyapunov equations
involved in the computation of the gradient can be solved using standard direct solvers.



The aim of this task is thus to adapt the framework proposed in [16] to a high-dimensional setup. While matrix-free/time-
stepper solvers for the Ricatti equations will already have been implemented in Tasks 1.1 and 1.2, similar developments
are needed for the Lyapunov equation. These implementations will provide the basic routines to evaluate the gradient of
the cost function. Regarding the optimizer, Rowley & Chen [16] suggest using a conjugate gradient method. Even though
a similar strategy may be employed eventually, our first implementation will rely on a sequential quadratic programming
(SQP) relaxation with a BFGS solver. SQP can easily accommodate for constraints on the locations of both sensors and
actuators. A dedicated paper presenting the algorithm and its performances on the different test cases will be written
and submitted to one of the journals mentioned in WP5.

Test cases and applications All the algorithms developed in this work package and the subsequent ones will be
tested and evaluated on two standard benchmarks, namely the canonical cylinder and shear-driven cavity flows. In both
cases, the controllers and estimators will be synthesized based on a linearization of the Navier-Stokes around the actual
fixed point of the systems and the time-averaged solution of the nonlinear equations. While the latter is more debatle
from a mathematical point of view, it provides a more realistic setup, unstable base flows being hardly achievable in
actual experiments. It also is a first step toward the applications to turbulent flows. In the second half of the project,
application to a three-dimensional slender body at moderately high Reynolds numbers, similar to the one in [49, 11,
50], will be considered. Being of high industrial and aerodynamics relevance, it will serve as a proof of concept of the
applicability of the methodologies developed during this project.

WP 2 — Data-driven linear modeling

Leader Jean-Christophe Loiseau
Contributing participants All participants
Duration 14 months

This second work package forms one of the main contributions of this project. It covers most of the first year of the PhD
candidate. Given two sets of data, X € C"** and Y € C™ %k, most data-driven linear models can be formulated as the
reduced-rank regression problem mentioned in §1. Of particular interest here is that many linear system identification
techniques (e.g. ERA [32], N4SID [61], DMDc [48], or ioDMD [8]) can also be cast into this framework.

Task 2.1 — Unifying framework for data-driven linear modeling

Assigned to Principal Investigator (20%) and PhD candidate (80%)
External collaborator Steven Brunton

Duration 4 months

Risk Low

Based on an exhaustive literature review, the goal of this task is to unify the most widely used data-driven linear modeling
techniques into a single framework. In the statistics community, a first step toward this aim was done by De la Torre
[19]. Developing such a unifying theoretical framework will provide a better understanding of the mathematical limitations
and statistical interpretation of this class of models when applied to large-scale dynamical systems. Being the first task
to be tackled by the PhD candidate, it will give them the opportunity to get up to speed with the current literature. It
will also be the occasion for the PhD candidate to implement these models on toy problems, getting familiar with both
the theoretical and numerical aspects (e.g. regularized regression, truncated singular value decomposition, etc).

Task 2.2 — Development of an open-source toolbox

Assigned to Principal Investigator (20%), PhD candidate (50%), and Post-doctoral researcher (30%)
Duration 6 months
Risk Low

In this second task, the first version of the toolbox will be developed, implementing all of the models unified in Task 2.1.
It will form the foundation of the developments to come in WP3 and WP4. The core of this toolbox will be written in
Julia. Getting inspiration from PySR [17], the toolbox will also come with a Python front-end for increased usability. It
will moreover expose an AP consistent with scikit-learn [47], the most widely used package for Machine Learning,
to benefit from its wide ecosystem. The toolbox will be released under the MIT license, and a public GitHub repository
and website (hosted using GitHub pages) will be created. A paper presenting the toolbox will be submitted for publication
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in the Journal of Open Source Software.

Task 2.3 — Benchmarking data-driven models

Assigned to PhD candidate (60%) and Post-doctoral researcher (40%)
Duration 6 months
Risk Low

The aim of this task is to benchmark the performances of the data-driven models. These results will be compared to the
performances of the high-fidelity models developed in WP1. With practical situations in mind, emphasis will be given
to models that do not explicitly need the adjoint solver or prior knowledge of the governing equations. For most models
(e.s. ERA, N4SID, etc), an extensive body of literature already exists and no new results are expected. The goal is to
set the reference performances against which parameterized versions of the models will be compared in WP3. For models
based on variants of DMD (e.g. DMDc [48] or ioDMD [8]), the situation is different. It has been shown in [38, 26, 5]
that recasting DMD into the reduced-rank regression framework improves the model's accuracy and generalizability.
Similar improvements are expected for the control-oriented versions of DMD. No such results are currently available in
the literature. By the end of this task, preliminary results regarding the control of the flow past the three-dimensional
slender body in chaotic regime studied in [50] will be produced.

Task 2.4 — Data-driven optimal sensors and actuators placement

Assigned to Principal Investigator + PhD candidate
External collaborator Krithika Manohar

Duration 4 months

Risk Moderate

This last task echoes Task 1.4. The optimization problem in Task 1.4 is a formidable task. To be useful in practical
situations, it however needs good a priori estimates of the optimal sensors and actuators. Yet, selecting a priori these
sensors and actuators from a set of candidates is a rapidly intractable combinatorial problem. Recently, Manohar et
al. [42] have proposed a greedy algorithm to tackle this issue. Based on a balanced realization using the whole set of
possible sensors and actuators, the best candidates are selected sequentially while ensuring that the performances of
the model are gracefully degraded. As for [16], this strategy has only been applied to relatively simple one-dimensional
partial differential equations. This task has two main objectives. First, it aims at showcasing the applicability of the data-
driven approach to sensor and actuator placement by Manohar et al. [42] to high-dimensional systems resulting from the
discretization of the Navier-Stokes equations. Once a good set of sensors and actuators has been selected, their positions
and parameters will be fine-tuned using the optimization problem from Task 1.4. This last step aims at restoring part of
the control authority lost when reducing the number of sensors and actuators available.

WP 3 — Parameterization and interpolation on the Grassman and Stiefel manifolds

Leader Jean-Christophe Loiseau
Contributing participants All participants
Duration 12 months

This third work package constitutes the major contribution of this project: the parameterization of data-driven models
with respect to the operating conditions. For simplicity, parameterization with respect to a single parameter (e.g. the
Reynolds number) will be considered, albeit the proposed methodology is more general. Given training data at different
operating conditions, a data-driven linear model can be identified for each sampled point in the parameter space using
the methodology developed in WP2. Yet, interpolating the models matrices in an entry wise fashion for a new operating
condition cannot be used as it would not preserve the underlying low-rank structure of the problem. This structured
interpolation needs to take place on a particular matrix manifold, either the Grassman or Stiefel manifold. Because they
are Riemannian manifolds, both of these are equipped with an intrinsic notion of distance between the models.

Based on prior theoretical works [1, 2, 67, 70, 68, 69], this work package aims at exploring the possibility to use these
tools from differential geometry to obtain parameterized data-driven linear models. First results on an airfoil in transonic
buffeting conditions with varying angle of attack have already been obtained by the principal investigator and his
collaborators in [52]. Our attention will be focused on two particular points:

e How to properly sample the parameter space for the particular problem of control-oriented models ?
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e Defining a priori error estimates for the accuracy of the interpolated models.

As for WP2, the performances of the parameterized data-driven models will be benchmarked and compared against those
of the high-fidelity models. The different algorithms for the parameterization will be implemented in the open-source
toolbox. This work package mostly covers the third year of the project, corresponding to the second year of the PhD thesis.

Task 3.1 — Parameterization of BPOD on the Grassman manifold

Assigned to Principal Investigator
Duration 3 months
Risk Low

This task follows the work of David Amsallem [1, 2] on parameterized reduced-order modeling for aero-elastic applications.
Given a parametric high-fidelity linear model

x = Ax+Bu
y = Cx+Du

where A, B, C and D can depend explicitly on the parameter, the aim of BPOD is to find two low-rank bases V and
W such that the reduced-order model

whvz wHAvz + WHBu
y = CVz+Du

captures most of the input-output properties of the high-dimensional system. For a new operating condition, the matrices
describing the system and their parametric dependencies being known ahead of time, only the matrices V and W need
to be interpolated. Being only interested in their span rather than the particular bases, this interpolation needs to happen
on the Grassmann manifold.

The aim of this task is to implement a parameterized version of BPOD inside nekStab. A particular emphasis will be
given to the choice of the sampling points in the parameter space as to reduced the computational cost of the offline stage.
For that purpose, dedicated a priori error estimators will be developed. This task will serve as a reference against which
to compare the performances of other parameterized models. BPOD being well-established in the control community
and no particular difficulties in its parameterization being foreseen, it will once again serve as a fallback strategy.

Task 3.2 — Parameterization of ADA and AAD on the Stiefel manifold

Assigned to Principal Investigator (50%) and PhD candidate (50%)
Duration 3 months
Risk Low

Although ADA and AAD form the current state-of-the-art for linear controller and estimator synthesis for high-dimensional
systems, the computational cost remains relatively high. Given a collection of controllers {Kiy, - -+, K,} or Kalman
gains {Ly, ---, L,} obtained in an offline stage at different operating conditions, this task will propose a methodology
to obtain good estimates K and L for a new operating condition without having to solve the ADA or AAD problems.
Entries of K (and similarly for L) are not independent as there exists an all-to-all coupling due to being solution of a
Ricatti equation. Obtaining estimates of these matrices at a new operating condition using interpolation techniques thus
need to preserve this coupling. Once again, interpolation needs to act globally on K (or L) rather than in an element-
wise fashion. Given the economy-sized SVD factorization {Ui¥1Vy, -, U,Z,V, } of the controllers and Kalman gains
obtained from ADA and AAD at different operating conditions, U and V can be obtained from interpolating the U;'s
and V,'s on the dedicated Stiefel manifold while 3 only needs linear interpolation. The estimate of the controller for the
new operating condition is then obtained as K = US V. A similar strategy will be used for the Kalman gain L. As for
the other work packages, the performances of these parameterized high-fidelity models will be evaluated and compared
against the baseline models developed in WP1.
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Task 3.3 — Parameterization of data-driven models on the Stiefel manifold

Assigned to Principal Investigator (20%) and PhD candidate (80%)
Duration 6 months
Risk Moderate

As stated before, most data-driven linear models can be cast into the following optimization problem

minimize |[M”(Y —PQ"X)||?
P.Q

subjectto P'MP =1,

where the exact meaning of X, Y, P and Q depend on the particular class of model considered. The operator L=PQT,
from which the matrices of the reduced-order model can be constructed, has a low-rank structure. Given models obtained
at different operating conditions, interpolating its matrices at a new point in the parameter space thus needs to preserve
this low-rank structure. Given P and Q, the economy-sized SVD factorization L= U, ¥, V| can easily be computed. As
for Task 3.2, the model at a new operating condition can be obtained form the previously computed models based on the
interpolation of the sets {Uy,---, U,} and { V4, ---, V,;} on the Stiefel manifold. Due to the unifying framework developed
in Task 2.1, this procedure is generic and can be applied to all models having been cast in this scope. A first of proof of
concept has been proposed by the principal investigator and collaborators in [52] to develop state observers from DMD
models parameterized by the angle of attack of an airfoil in transonic buffeting conditions. As for the rest of the project,
attention will be given to control-oriented models although other models (e.g. LSE or SPOD) might be considered. The
accuracy and performances of these parameterized models will be compared against the baseline references produced in
WP1.

WP 4 — Sensitivity, uncertainty quantification, and applications

Leader Jean-Christophe Loiseau & Xavier Merle
Contributing participants Principal Investigator + Xavier Merle + PhD candidate
Duration 12 months

Except for Task 4.3, applying the methodology developed in the previous work packages to a fully three-dimensional
chaotic flow in the wake of a slender body, Tasks 4.1 and 4.2 are more prospective. An aspect often overlooked in data-
driven models applied to fluid dynamics is their robustness and statistical significance. Assessing the prediction uncertainty
is also critical, particularly for feedback control using an imperfect model. While techniques falling under the umbrella
of robust control exist, a different route will be explored, combining ideas from sensitivity analysis and uncertainty
quantification with statistics on the Stiefel manifold.

Task 4.1 — Sensitivity of data-driven models to varying parameters

Assigned to Principal Investigator (50%) + PhD candidate (50%)
Duration 4 months
Risk Low

So far, parameterizing the models relies on interpolation along the Stiefel manifold solely based on position information.
High-order interpolation schemes can be used if one has access to the gradient of the models with respect to the control
parameter. In 2009, Hay et al. [25] derived the parametric sensitivity of POD modes and POD eigenvalues. POD being
a particular instance of the more general optimization problem explored in WP2, the aim of the present task is to extend
the work of Hay et al. [25] to all data-driven models falling into the unifying framework at the center of this project. Such
sensitivity analysis serves multiple purposes. First, including the sensitivity modes into the projection basis for models
relying on (Petrov-) Galerkin projection (e.g. BPOD) was shown to increase the range of validity of the reduced-order
model, see [25]. It can also serve to inform the sampling strategy, concentrating the computational cost into regions of
the parameter space exhibiting high sensitivity. High-order interpolation schemes (e.g. cubic Hermite interpolation on
Riemannian manifolds) also benefit from these sensitivities, see [69]. Finally, it can be used to perform between-models
comparisons, those with high sensitivity being possibly more accurate but less likely to generalize, and hence less robust.
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Task 4.2 — Uncertainty quantification on the Stiefel manifold

Assigned to Xavier Merle (30%) + PhD candidate (70%)
Duration 6 months
Risk Moderate

An aspect often overlooked in data-driven models is their robustness with respect to the data itself. This is however
critical, particularly for models used for feedback control purposes. The main goal of this task is to robustify the data-
driven models and equip them with uncertainty quantification capabilities. Robustifying the identified model with respect
to the training data can be performed using an ensembling strategy. While approaches such as Spectral Proper Orthogonal
Decomposition are naturally formulated using such an ensembling, most other data-driven models are not. A first step
in this direction has been proposed by Sashidhar & Kutz [53]. One limitation of their approach is that their ensembling
procedure relies on simple averaging not necessarily consistent with the low-rank structure of the model. It should be
emphasized however that each model generated during this ensembling can be associated with a point on the Stiefel
manifold. Once again, this particular manifold provides a natural framework in which to formulate the different statistical
tasks needed to quantify the models uncertainties while preserving their fundamental low-rank structure. This task will
be conducted in close collaboration with Xavier Merle, a Maitre de Conférences in DynFluid with a strong expertise in
uncertainty quantification techniques.

Task 4.3 — Application to the 3D flow past a slender body

Assigned to PhD candidate (100%)
External collaborator Georgios Rigas
Duration 3 years

Risk Moderate

Although included in WP4, this last task runs over the whole duration of the PhD thesis. After having benchmarked the
different techniques on the two test cases (e.g. the canonical cylinder and shear-driven cavity flows), the end goal of this
project is to showcase their applicability on a realistic configuration of both academic and industrial interest. For that
purpose, the chaotic flow past a three-dimensional slender body already investigated in [49, 11, 50] is considered. Data
needed to train the models will be generated using the open-source spectral element solver Nek5000, a highly parallel
CFD solver for which the DynFluid laboratory has a long and recognized expertise. This task will benefit from on-going
collaborations with Georgios Rigas [13, 15] and might see, by then end of the project, the deployment of the control-
oriented models into an actual experiment conducted at Imperial College.

WP 5 — Scientific communication and dissemination

Leader Jean-Christophe Loiseau
Contributing participants All participants
Duration 4 years

This last work package includes everything related to the communication and dissemination. It includes publication of
scientific articles, participation to national and international conferences or workshops, as well as public outreach and
the provision of open-source tools.

e Publications - Different journals might be targeted depending on the applications. Regarding the theoretical
aspects, these include SIAM journal on applied dynamical systems, SIAM journal on mathematics of data science,
Journal of Nonlinear Science or Nonlinearity. Applications coming primarily from fluid dynamics, tentative journals
include Journal of Fluid Mechanics, Theoretical and Computational Fluid Dynamics, Physical Review Fluids, or
Physics of Fluids.

e Communication — The following conferences will be targeted: APS Annual Meeting of the Division of Fluid
Dynamics, European Fluid Mechanics Conference, 26th International Congress of Theoretical and Applied
Mechanics, Bifurcation and Instabilities in Fluid Dynamics, or the SIAM Conference on Applications of Dynam-
ical Systems. Workshops will include the ERCOFTAC SIG33 workshop or relevant EUROMECH Colloquia.
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e Public outreach — The principal investigator is a regular contributor to the blog Towards Data Science. Short
articles describing the major breakthroughs for a non-technical audience might be published on this platform. A
dedicated website, hosted using the GitHub Pages system, will also be published online and regularly updated with
the latest news regarding the project. Finally, through on-going collaborations with Steven Brunton and regular
visits of the principal investigator to Seattle, the public outreach aspect of this project will benefit graciously from
their studio and LightBoard (see link for an example).

e Open-source tools — One major outcome of this project will be the development of an open-source and user-
friendly package for the creation of parameterized data-driven linear models. Following what is being undertaken
by the principal investigator on nekStab, a dedicated web page will be created and a companion paper submitted
to the Journal of Open Source Software.

Along with these well-identified scientific journals, conferences and actions, every opportunity to give seminars in national
and international research institutes will be taken.

Milestones and deliverable

Please find below a table summarizing the major deliverable and their expected due dates.

WP Deliverable Due date
Kick-off Meeting TO
0 [DO0.1 - D0.7 : Activity reports Every semester.
DO0.8 : Final report TO + 48
D1.1 : Implementation of BPOD in nekStab TO+ 3
1 D1.2 : Implementation of ADA in nekStab TO+ 7
D1.3 : Implementation of AAD in nekStab TO + 10
D1.4 : Optimal sensor/actuator placement in nekStab TO + 13
D2.1 : Version 1.0 of the open-source package for data-driven linear models. TO + 18
2 | D2.2 : Online publication of the benchmarks TO + 24
D2.3 : Baseline references of the uncontrolled 3D slender body configuration TO + 24
D3.1 : Parameterization of BPOD models TO + 24
D3.2 : Parameterization of ADA and AAD TO + 28
3 | D3.3: Version 2.0 of the open-source package including the parameterization of the data-driven
. . . . . TO + 36
linear models which have been cast into the unifying reduced-rank regression framework
D3.4 : Online publication of the extended benchmarks, including the parameterization TO + 36
D4.1 : Implementation of the sensitivity analysis in nekStab TO + 38
4 | D4.2 : Version 3.0 of the open-source package with uncertainty quantification capabilities TO + 42
D4.3 : Final results on the 3D slender body flow configuration with control TO + 48
Table 2. List of the different deliverable and expected due date.
2 Organization and implementation of the project
2.1 Scientific coordinator and its team
Name Person-month Call, agency Project’s title | Scientific coordinator |  Start-End
Jean-Christophe LOISEAU 4 CleanSky 2 PERSEUS Nicolas Mazllier | 02/20 — 03/23
. 6 CleanSky 2 PERSEUS Nicolas Mazellier |02/20 — 03/23
Jean-Christophe ROBINET 10 DGAC MAMBO J-Ch. Robinet |09/21 — 09/26

Xavier MERLE

Table 3. Implication of the scientific coordinator in on-going projects.
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Jean-Christophe LOISEAU Principal investigator, he graduated in 2010 from the International Master Program in
Fluid dynamics proposed by Université Pierre et Marie Curie and Ecole Polytechnique. During this time, he received a
grant from the Undergraduate Research Opportunity Program of Imperial College to study the local stability of two-phase
flows with Professor Spelt. He then enrolled in a PhD program at Arts et Métiers with Professors Robinet (Arts et Métiers,
Paris) and Leriche (Université Lille 1, Villeneuve d'Ascq). He defended his thesis, entitled Dynamics and global stability
analysis of three-dimensional flows, in May 2014. From June to December 2014, he obtained a post-doctoral scholarship
at DIMEG, Politecnico di Bari, working with Professors Cherubini and Di Palma on nonlinear optimal perturbations in
canonical wall-bounded shear flows. From March 2015 to August 2016, he obtained a post-doctoral researcher position
at KTH with Professor Luca Brandt. Hired in September 2016 by Arts et Métiers as Enseignant-Chercheur contractuel,
he was promoted to Maitre de Conférences in September 2017. His research activities are evenly divided between i)
elucidating the physical mechanisms responsible for transition to turbulence in three-dimensional flows, and ii) the
development and use of data-driven techniques for reduced-order modeling in the physical and engineering sciences.

As of March 2022, he has published more than 20 scientific papers, the most relevant ones for this project being

e [52] A. Sansica, J.-Ch. Loiseau, M. Kanamori, A. Hashimoto and J.-Ch. Robinet. System Identification of two-
dimensional transonic buffet. AIAA Journal, p. 1-17, 2022.

e [14] J. L. Callaham, S. L. Brunton and J.-Ch. Loiseau. On the role of nonlinear correlations in reduced-order
modelling. Journal of Fluid Mechanics, vol. 938, 2022.

e [40] J.-Ch. Loiseau, S. L. Brunton and B. R. Noack. From the POD-Galerkin method to sparse manifold
models. Handbook of Model Order Reduction, vol. 3, 2021.

e [38] J.-Ch. Loiseau. Data-driven modeling of the chaotic thermal convection in an annular thermosyphon.
Theoretical and Computational Fluid Dynamics, 34(4), p. 339-365, 2021.

e [41] J.-Ch. Loiseau, B. R. Noack and S. L. Brunton. Sparse reduced-order modelling: sensor-based dynamics
to full-state estimation. Journal of Fluid Mechanics, 844, p. 459-490, 2018.

e [39] J.-Ch. Loiseau and S. L. Brunton. Constrained sparse Galerkin regression. Journal of Fluid Mechanics,
838, p. 4267, 2018.

Since 2017, he has co-supervised one PhD thesis (C. Tarsia Morisco, Dynamique nonlinéaire et stabilité linéaire d’une
tuyere sur-détendue, funded by CNES, 2020) and is actively co-supervising one with Professor Robinet (R. Schuch Frantz,
Instabilities and transition to turbulence in periodic flows, defense in April 2022), as well as with Professors Antoine
Dazin and Francesco Romano (Arts et Métiers, Lille) on machine learning techniques for turbo-machines (started in Sep.
2021). Finally, he is involved in the CleanSky 2 project PERSEUS, co-supervising a post-doctoral researcher working on
adjoint-based sensitivity methods for flow control applications.

While the activities on hydrodynamic instabilities have profited from a bourse ministérielle, those on data-driven modeling
rely exclusively on collaborations with A. Sansica (JAXA, Japan), B. R. Noack (Harbin Institute of Technology, China),
G. Rigas (Imperial College, UK), J. N. Kutz, and S. Brunton (University of Washington, USA). The project will benefit
from continuous feedback from these researchers. Even though already enjoying international exposure (seminars in
European and oversea institutes, invited researcher at the Institute for Pure and Applied Mathematics at UCLA, invited
speaker at the spring school Outstanding challenges in nonlinear dynamics in Les Houches), the PhD thesis and post-
doctoral position included in this project will enable him to start his own research group and secure long-term funding
dedicated to the development of these activities. Finally, plans are being made for him to defend his Habilitation a diriger
des recherches shortly after the start of the project to ease the supervision of the PhD candidate.

Jean-Christophe ROBINET Head of DynFluid since 2019, he obtained his Habilitation a diriger des recherches in 2008
from Université Pierre et Marie Curie. His main research activities focus on linear and nonlinear instabilities, both in the
compressible and incompressible regimes. He has been involved in numerous ANR projects, the most recent ones being
SICOGIF (2009-2013), DECOMOS (2010-2014), and ASCA (2018-2022). His involvement in this project is primarily
limited to that of advisor. Given his expertise with ANR projects, his role will be to ensure the correct progress of the
project through periodic meetings. If the HDR defense of the principal investigator is delayed or the supervision denied
by Arts et Métiers doctoral school, he will also ensure the administrative supervision of the Ph.D. candidate.
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Xavier MERLE After having defended his Ph.D. thesis in 2009 dedicated to global stability analyses, he obtained a
position as Maitre de Conférences at DynFluid where his main research activities focus on the development of uncertainty
quantification techniques for the simulation of turbulent flows. He currently co-supervises two Ph.D. theses on the subject
in collaboration with Prof. Paola Cinnella and funded by SAFRAN Tech. In this project, he will lead the theoretical and
numerical developments grouped under Task 4.2 related to the formulation of an uncertainty quantification framework
for data-driven linear models.

2.2 Implemented and requested resources to reach the objectives

A detailed breakdown of the different expenses is given below, along with a summary table. These informations are also
available from the dedicated ANR website.

Staff expenses Theses expenses form the largest fraction of the requested funding and will cover the salary of the Ph.D.
candidate and post-doctoral researcher. Following Arts et Métiers guidelines, the monthly wage for the Ph.D. candidate
is set to 3350 € (including taxes) for a duration of 36 months, amounting to 120 600 €. Similarly, the monthly wage for
the post-doctoral researcher is set to 4000 € (including taxes) for a duration of 18 months, amounting to 72 000 €.

Instruments and material costs Being of mathematical and numerical nature, the project incurs relatively little
instruments and material costs. Most large scale computations will be run on the national high-performance computing
facilities through a dedicated application. These costs are thus limited to the acquisition of a workstation with a
sufficient number of core to run all the test cases locally and conduct preliminary analyses for the three-dimensional flow
computations. A tentative description of this workstation is provided below

Vendor DELL
Number of cores 2 x 24
Hard drive 4To
Cost ~ 10 000 €

Building and ground costs None.
Outsourcing/subcontracting None.

General and administrative costs & other operating expenses These expenses include the administrative manage-
ment costs, as well as the travel costs. It also cover expenses related to the participation to national and international
conferences. The administrative management fees applied by Arts et Métiers account for 13% of the total requested funds,
amounting to 30 000€. Over the duration of the project, it is anticipated that the post-doctoral researcher will attend
one international conference, while the Ph.D. candidate will participate in two to three of them. For each participation,
expenses are estimated on average to 2000 € (including conference fees and travel costs), totalling to 8000€. Finally,
2000¢€ are also budgeted for miscellaneous travel costs, most notably the expenses for organizing the Ph.D. defense.

Arts et Métiers
Ph.D. thesis (duration : 36 120 600 €
months)
Staff expenses —
Post-doctoral position (dura-
i 72 000 €
tion : 18 months)
I?strur_nents_ a_n.d material costs 10 000 €
(including scientific consumables)
Building and ground costs X
Outsourcing and subcontracting X
Travel costs and missions 2000 €
General and administrative costs, and| Conferences and seminars 6000 €
other operating expenses Administrative management
£ 27 378 €
and structure cost
Sub-total 237 978 €
Requested funding 237 978 €

Table 4. Requested means by item of expenditure and by partner*.
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* The amount indicated here must be strictly identical to those entered on the website. If both information are not consistent, if they were
badly filled or in lacking, the information entered online will prevail on those reported in the submission form/scientific document.

** For marginal cost beneficiaries, these costs will be a package of 13% of the eligible expenses. For full cost beneficiaries, these costs will
be a sum of max. 68% of staff expenses and max. 7% of other expenses.

3 Impact and benefits of the project

Applications of closed-loop flow control have epic proportions: drag reduction, lift increase, mixing enhancement, or
noise mitigation. In this context, data-driven models have emerged as a powerful paradigm over the past decade. Yet,
despite the large body of literature, these techniques still haven't reach the level of maturity of projection-based models,
most notably for parametric dynamical systems. The aim of this project is thus to close this gap by leveraging recent
progresses in high-dimensional rank-constrainted regressions problems and differential geometry.

Scientific impact Being able to parameterize generalized linear models offer now possibilities. Linear state-space models
are the workhorses in the control community. The EigenRealization algorithm (ERA) for instance identifies a state-
space model from the low-rank factorization of the Hankel matrix constructed from impulse response data. The range of
validity of the model as the system’s parameters vary is however limited. By collecting impulse reponse of the system at
different operating conditions, the methodology proposed in this project will allow for a better estimate of the model at a
new operating condition while limiting the required computational cost. This translate to a better synthesized controller
which, in turn, implies better performances of the control system, e.g. more lift enhancement or drag reduction.

Although a strong emphasis throughout the project is given to control-oriented models, the proposed methodology is
fairly general. It is applicable to most data-driven models resulting from the formulation of a rank-constrainted least-
squares problem. Two prominent such models are POD and DMD. They are used across all scientific disciplines, from
fluid dynamics to cognitive and computational neurosciences, for tasks as diverse as reduced-order modeling, coherent
structures extraction, or simply for compression. Combining the ability to parameterize these models along with smart
sampling strategies of the parameter space can drastically reduced the number of experiments to be conducted in order
to obtain a good description of an otherwise complex system. Likewise, non-negative matrix factorization (NNMF) is a
widespread algorithm in computer vision. NNMF is another special instance of reduced-rank regression problem to which
the proposed methodology might be extended. Similarly, Gaussian mixtures are widely used to model complex probability
distributions such as the ones arising in molecular dynamics. Extension of the interpolation scheme to the manifold of
symmetric positive definite matrices exists. Doing so would provide researchers with the ability to parameterize these
probability densities based on the temperature of the thermal bath in which the system evolves. Because of its generality,
the methodology proposed in this project thus far-reaching applications, not only in engineering and control systems but
also in data science and machine learning in general.

In the same vein, uncertainty quantification techniques have gained a renewed interest in recent years. This was made
possible by new algorithms with improved performances and the ever increasing computational power allowing the
application of uncertainty quantification techniques to increasingly complex systems. Extending naturally data-driven
linear models with built-in uncertainty quantification capabilities is thus timely. In the machine learning community, linear
dimensionality reduction techniques are often used as pre-processing steps prior to fitting a regression or classification
model. Being able to quantify the uncertainties in this initial pre-processing step might be extremely valuable for
downstream tasks. Once obtained, they can be propagated through the machine learning model to obtain better and
more reliable estimates of the uncertainties of the output, both for regression or classification problems. For control
applications, the main subject of interest in this project, these extensions would allow to design a control law being robust
to epistemic uncertainties.

Societal impacts and industrial applications Although the overall methodology developed during the project is quite
general, a strong emphasis is given to control-oriented models. As stated before, applications of closed-loop flow control
have epic proportions. Despite the emergence of deep reinforcement learning techniques, the gold standard in industry
still relies on linear time-invariant or parameter-varying state-space models combined with optimal or model predictive
control. These methods are however challenged by high-dimensionality, uncertainties and parametric dependencies, all
three aspects being at the center of this project. Being able to parameterize these models by efficiently sampling the
parameter space might thus drastically reduce the computational cost of building them while, at the same time, increasing
their range of validity. With the same overarching goal, introducing built-in uncertainty quantification capabilities into
these models will lead to more robust controllers and state estimators even in the presence of epistemic uncertainties.
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In order to illustrate the industrial relevance of our methodology, a three-dimensional flow of industrial interest is
considered as a demonstrator. It exhibits all of the key physical phenomena currently challenging feedback control in
industrial setups. These include turbulence, high-dimension, bi-stability, and vortex shedding. All of these phenomena
are crucially relevent in the automotive industry. Being able to provide robust low-order models for real-time feedback
control targetting drag reduction will thus have an enormous impact, both economically and environmentally. Reliably
reducing drag even by a few percent at the scale of a single car or truck directly translates to gigantic savings in term
of fuel consumption at the scale of the worlwide population. Additionally, reducing fuel consumption subsequentially
implies reduced greenhouse gas emission, a timely objective given the current climatic and geopolitic situation. Finally,
even with the transition to electric vehicles and renewable energy, being able to reduced drag on road vehicles still is
extremely relevant in order to increase the distance such a vehicle can travel using a limited battery capacity.

Strategy for disseminating and exploiting the results The dissemination strategy relies on different actions. As for
most scientific project, results will be published in top-tier journals in applied mathematics (for the theoretical aspects)
or fluid dynamics (for the applications). These include journals listed in WP5. The most impactful results will also be
presented to the community by participating to national and international conferences as well as through seminars and
online webinars. A dedicated website will also be published online using the GitHub Pages system. Along with providing
a description of the project, this website will also host periodic updates on the project’s progress, the biannual reports, as
well as an exhaustive list of the scientific production with links to open-access versions of the published papers whenver
possibles (notably by hosting them on arXiv).

Because we value open-source softwares and reproducible research, all the numerical methods developed during the project
will be implemented in open-source packages. The first one, nekStab, is an open-source toolbox written in Fortran for
large-scale bifurcation and stability analysis tailored to the open-source spectral element solver Nek5000. It will host
all of the algorithmic developments from WP1 relating to high-dimensional Ricatti and Lyapunov solvers as well as the
optimization algorithm for sensors and actuators placement. Although it reached version 1.0 only recently, nekStab has
been actively developed by the principal investigator of this project over the course of the past ten years. Developments
associated to WP2 to WP4, related to data-driven models and their parameterization, will rely on a second open-source
package which has yet to be developed. As stated earlier in the document, the computational core of this package will
be written in Julia. This relatively new programming language, first published in 2011, has already established itself as a
serious contender in the field of scientific computing by combining the flexibility of Python and numerical performances
of compiled languages such C or Fortran. Another key aspect is its extremely high composability. In particular, our yet-
to-come package will leverage some capabilities from Manifold. j1, a Julia package providing a unified interface for
operations on differential manifolds. The package will moreover benefit from a front-end written in Python to increase
its reach. This front-end will expose an APl compatible with scikit-learn, the most widely used package for Machine
Learning in Python, to benefit directly from its wide ecosystem.

Finally, public outreach for a non-technical audience or students is also a key aspect of our dissemination strategy. It
will rely on different channels. The principal investigator being a regular contributor to the blog Towards Data Science
(see here for the list of contributions), blog posts presenting theoretical aspects which might be useful to practionners
outside the field of fluid dynamics will be published via this platform (current contributions collect more than 3500 views
per month on average). These posts will also be advertised on Twitter. Finally, Steve Brunton, with whom the principal
investigator has a long standing collaboration, has graciously offered that we use his LightBoard and recording studio to
produce videos presenting the most important results of this project.
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