module specialmatrices_circulant use stdlib_linalg_constants, only: dp, ilp, lk use fftpack, only: fft, ifft implicit none(type, external) private ! --> Linear algebra public :: transpose public :: matmul public :: inv public :: solve public :: svd, svdvals public :: eig, eigvals ! --> Utility functions. public :: dense public :: shape public :: size public :: operator(*) !---------------------------------------------------- !----- Base type for Circulant matrices ----- !---------------------------------------------------- type, public :: Circulant !! Base type to define a `Circulant` matrix of size [n x n] with elements !! given by the vector \(c = (c[1], c[2], ..., c[n]).\) private integer(ilp) :: n !! Dimension of the matrix. real(dp), allocatable :: c(:) !! Generating vector. complex(dp), allocatable :: c_hat(:) !! Fourier Transform of the generating vector. end type !-------------------------------- !----- Constructors ----- !-------------------------------- interface Circulant !! This interface provides methods to construct `Circulant` matrices. !! Given a vector \( \mathbf{c} = (c_1, c_2, \cdots, c_n)\), !! the associated `Circulant` matrix is the following `[n x n]` matrix !! !! \[ !! A !! = !! \begin{bmatrix} !! c_1 & c_2 & \cdots & c_n \\ !! c_n & c_1 & \cdots & \vdots \\ !! \vdots & \ddots & \ddots & c_2 \\ !! c_2 & \cdots & c_n & c_1 !! \end{bmatrix}. !! \] !! !! #### Syntax !! !! ```fortran !! integer, parameter :: n = 100 !! real(dp) :: c(n) !! type(Circulant) :: A !! !! call random_number(c) !! A = Circulant(c) !! ``` !! !! @note !! Only `double precision` is currently supported for this matrix type. !! @endnote pure module function construct(c) result(A) !! Construct a `Circulant` matrix from the rank-1 array `c`. real(dp), intent(in) :: c(:) !! Generating vector. type(Circulant) :: A !! Corresponding Circulant matrix. end function end interface !------------------------------------------------------------------- !----- Matrix-vector and Matrix-matrix multiplications ----- !------------------------------------------------------------------- interface matmul !! This interface overloads the Fortran intrinsic `matmul` for a !! `Circulant` matrix, both for matrix-vector and matrix-matrix products. !! For a matrix-matrix product \( C = AB \), only the matrix \( A \) !! has to be a `Circulant` matrix. Both \( B \) and \( C \) need to be !! standard Fortran rank-2 arrays. All the underlying functions are !! defined as `pure`. !! !! #### Syntax !! !! ```fortran !! y = matmul(A, x) !! ``` pure module function spmv(A, x) result(y) !! Compute the matrix-vector product for a `Circulant` matrix \(A\). !! Both `x` and `y` are rank-1 arrays with the same kind as `A`. type(Circulant), intent(in) :: A !! Input matrix. real(dp), intent(in) :: x(:) !! Input vector. real(dp), allocatable :: y(:) !! Output vector. end function pure module function spmvs(A, X) result(Y) !! Compute the matrix-matrix product for a `Circulant` matrix `A`. !! Both `X` and `Y` are rank-2 arrays with the same kind as `A`. type(Circulant), intent(in) :: A !! Input matrix. real(dp), intent(in) :: x(:, :) !! Input matrix. real(dp), allocatable :: y(:, :) !! Output matrix. end function end interface !----------------------------------------------- !----- Linear systems of equations ----- !----------------------------------------------- interface solve !! This interface overloads the `solve` interface from `stdlib_linalg` !! for solving a linear system \( Ax = b \) where \( A \) is a !! `Circulant` matrix. It also enables to solve a linear system with !! multiple right-hand sides. !! !! #### Syntax !! !! ```fortran !! x = solve(A, b) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Circulant` type. !! It is an `intent(in)` argument. !! !! - `b` : Rank-1 or rank-2 array defining the right-hand side(s). !! It is an `intent(in)` argument. !! !! - `x` : Solution of the linear system. !! It has the same type and shape as `b`. !! !! @note !! Linear systems characterized by a circulant matrix can be solved !! efficiently in \(\mathcal{O}(n \log\ n)\) operations using the !! Fast Fourier Transform algorithm available via `fftpack`. !! @endnote pure module function solve_single_rhs(A, b) result(x) !! Solve the linear system \(Ax=b\) where \(A\) is `Circulant` and !! `b` a standard rank-1 array. The solution vector `x` has the same !! dimension and kind as the right-hand side vector `b`. type(Circulant), intent(in) :: A !! Coefficient matrix. real(dp), intent(in) :: b(:) !! Right-hand side vector. real(dp), allocatable :: x(:) !! Solution vector. end function pure module function solve_multi_rhs(A, B) result(X) !! Solve the linear system \(AX=B\), where `A` is `Circulant` and !! `B` is a rank-2 array. The solution matrix `X` has the same !! dimension and kind as the right-hand side matrix `B`. type(Circulant), intent(in) :: A !! Coefficient matrix. real(dp), intent(in) :: B(:, :) !! Right-hand side vectors. real(dp), allocatable :: X(:, :) !! Solution vectors. end function end interface interface inv pure module function inv_rdp(A) result(B) !! Utility function to compute the inverse of a `Circulant` matrix. !! If `A` is circulant, its inverse also is circulant. type(Circulant), intent(in) :: A !! Input matrix. type(Circulant) :: B !! Inverse of `A`. end function end interface !------------------------------------------------ !----- Singular Value Decomposition ----- !------------------------------------------------ interface svdvals !! This interface overloads the `svdvals` interface from `stdlib_linalg` !! to compute the singular values of a `Circulant` matrix \(A\). !! !! #### Syntax !! !! ```fortran !! s = svdvals(A) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Circulant` type. !! It is an `intent(in)` argument. !! !! - `s` : Vector of singular values sorted in decreasing order. module function svdvals_rdp(A) result(s) !! Compute the singular values of a `Circulant` matrix. type(Circulant), intent(in) :: A !! Input matrix. real(dp), allocatable :: s(:) !! Singular values in descending order. end function end interface interface svd !! This interface overloads the `svd` interface from `stdlib_linalg` to !! compute the the singular value decomposition of a `Circulant` matrix !! \(A\). !! !! #### Syntax !! !! ```fortran !! call svd(A, s, u, vt) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Circulant` type. !! It is an `intent(in)` argument. !! !! - `s` : Rank-1 array `real` array returning the singular values of !! `A`. It is an `intent(out)` argument. !! !! - `u` (optional) : Rank-2 array of the same kind as `A` returning !! the left singular vectors of `A` as columns. !! Its size should be `[n, n]`. !! It is an `intent(out)` argument. !! !! - `vt` (optional) : Rank-2 array of the same kind as `A` returning !! the right singular vectors of `A` as rows. Its !! size should be `[n, n]`. !! It is an `intent(out)` argument. !! !! @note !! Singular values and singular vectors of a `Circulant` matrix can be !! efficiently computed based on the Fast Fourier transform. !! @endnote module subroutine svd_rdp(A, s, u, vt) !! Compute the singular value decomposition of a `Circulant` matrix. type(Circulant), intent(in) :: A !! Input matrix. real(dp), intent(out) :: s(:) !! Singular values in descending order. real(dp), optional, intent(out) :: u(:, :) !! Left singular vectors as columns. real(dp), optional, intent(out) :: vt(:, :) !! Right singular vectors as rows. end subroutine end interface !-------------------------------------------- !----- Eigenvalue Decomposition ----- !-------------------------------------------- interface eigvals !! This interface overloads the `eigvals` interface from `stdlib_linalg` !! to compute the eigenvalues of a real-valued matrix \( A \) whose !! type is `Circulant`. !! !! #### Syntax !! !! ```fortran !! lambda = eigvals(A) !! ``` !! !! #### Arguments !! !! - `A` : `real`-valued matrix of `Circulant` type. !! It is an `intent(in)` argument. !! !! - `lambda` : Vector of eigenvalues in increasing order. !! !! @note !! Eigenvalues of a circulant matrix can be efficiently computed using !! the Fast Fourier Transform of the generating vector `c`. !! @endnote module function eigvals_rdp(A) result(lambda) !! Utility function to compute the eigenvalues of a real `Circulant` !! matrix. type(Circulant), intent(in) :: A !! Input matrix. complex(dp), allocatable :: lambda(:) !! Eigenvalues. end function end interface interface eig !! This interface overloads the `eig` interface from `stdlib_linalg` to !! compute the eigenvalues and eigenvectors of a real-valued matrix \(A\) !! whose type is `Circulant`. !! !! #### Syntax !! !! ```fortran !! call eig(A, lambda [, left] [, right]) !! ``` !! !! #### Arguments !! !! - `A` : `real`-valued matrix of `Circulant`. !! It is an `intent(in)` argument. !! !! - `lambda` : Rank-1 `real` array returning the eigenvalues of `A` !! in increasing order. It is an `intent(out)` argument. !! !! - `left` (optional) : `complex` rank-2 array of the same kind as !! `A` returning the left eigenvectors of `A`. !! It is an `intent(out)` argument. !! !! - `right` (optional) : `complex` rank-2 array of the same kind as !! `A` returning the right eigenvectors of `A`. !! It is an `intent(out)` argument. !! !! @note !! Eigenvalues of a circulant matrix can be efficiently computed using !! the Fast Fourier Transform of the generating vector `c`. Likewise, !! its eigenvectors are simply the corresponding Fourier modes. !! @endnote module subroutine eig_rdp(A, lambda, left, right) !! Utility function to compute the eigenvalues and eigenvectors of a !! `Circulant` matrix. type(Circulant), intent(in) :: A !! Input matrix. complex(dp), intent(out) :: lambda(:) !! Eigenvalues. complex(dp), optional, intent(out) :: right(:, :), left(:, :) !! Eigenvectors. end subroutine end interface !------------------------------------- !----- Utility functions ----- !------------------------------------- interface dense !! Convert a `Circulant` matrix to its dense representation. !! !! #### Syntax !! !! ```fortran !! B = dense(A) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Circulant` type. !! It is an `intent(in)` argument. !! !! - `B` : Rank-2 array representation of the matrix \( A \). module function dense_rdp(A) result(B) !! Utility function to convert a `Circulant` matrix to a rank-2 array. type(Circulant), intent(in) :: A !! Input diagonal matrix. real(dp), allocatable :: B(:, :) !! Output dense rank-2 array. end function end interface interface transpose !! This interface overloads the Fortran `intrinsic` procedure to define !! the transpose operation of a `Circulant` matrix. !! !! #### Syntax !! !! ```fortran !! B = transpose(A) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Circulant`. !! It is an `intent(in)` argument. !! !! - `B` : Resulting transposed matrix. It is of the same type as `A`. pure module function transpose_rdp(A) result(B) !! Utility function to compute the transpose of a `Circulant` matrix. type(Circulant), intent(in) :: A !! Input matrix. type(Circulant) :: B !! Transpose of the matrix. end function end interface interface size !! Utility function to return the size of a `Circulant` matrix along !! a given dimension. pure module function size_rdp(A, dim) result(arr_size) !! Utility function to return the size of `Circulant` matrix along a !! given dimension. type(Circulant), intent(in) :: A !! Input matrix. integer(ilp), optional, intent(in) :: dim !! Queried dimension. integer(ilp) :: arr_size !! Size of the matrix along the dimension dim. end function end interface interface shape !! Utility function to return the shape of a `Circulant` matrix. pure module function shape_rdp(A) result(arr_shape) !! Utility function to get the shape of a `Circulant` matrix. type(Circulant), intent(in) :: A !! Input matrix. integer(ilp) :: arr_shape(2) !! Shape of the matrix. end function end interface interface operator(*) pure module function scalar_multiplication_rdp(alpha, A) result(B) !! Utility function to perform a scalar multiplication with a !! `Circulant` matrix. real(dp), intent(in) :: alpha type(Circulant), intent(in) :: A type(Circulant) :: B end function scalar_multiplication_rdp pure module function scalar_multiplication_bis_rdp(A, alpha) result(B) !! Utility function to perform a scalar multiplication with a !! `Circulant` matrix. type(Circulant), intent(in) :: A real(dp), intent(in) :: alpha type(Circulant) :: B end function scalar_multiplication_bis_rdp end interface end module