This interface provides different methods to construct a Diagonal
matrix. Only the diagonal elements of are being stored, i.e.
Diagonal
matrix filled with zeros: integer, parameter :: n = 100
type(Diagonal) :: A
A = Diagonal(n)
Diagonal
matrix from a vector. integer, parameter :: n = 100
real(dp), allocatable :: dv(:)
type(Diagonal) :: A
integer :: i
dv = [(i, i=1, n)]; A = Diagonal(dv)
Diagonal
matrix with constant diagonal element. integer, parameter :: n = 100
real(dp), parameter :: d = 2.0_dp
type(Diagonal) :: A
A = Diagonal(d, n)
Diagonal
matrix from a standard rank-2 array. integer, parameter :: n = 100
real(dp) :: B(n, n)
type(Diagonal) :: A
call random_number(B); A = Diagonal(B)
Note
Only double precision
is currently supported for this matrix type.
Utility function to construct a Diagonal
matrix from a rank-1
array.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=dp), | intent(in) | :: | dv(:) |
Diagonal elements of the matrix. |
Corresponding diagonal matrix.
Utility function to construct a Diagonal
matrix with constant
diagonal element.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=dp), | intent(in) | :: | d |
Constant diagonal element of the matrix. |
||
integer(kind=ilp), | intent(in) | :: | n |
Dimension of the matrix. |
Corresponding diagonal matrix.
Utility function to construct a Diagonal
matrix from a rank-2
array. The resulting matrix is constructed from the diagonal
element of the input matrix, even if the latter is not diagonal.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=dp), | intent(in) | :: | A(:,:) |
Dense matrix from which to construct the
|
Corresponding diagonal matrix.
Utility function to construct a Diagonal
matrix filled with
zeros.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n |
Dimension of the matrix. |
Corresponding diagonal matrix.
This interface provides methods to convert a Diagonal
matrix to a
regular rank-2 array.
B = dense(A)
A
: Matrix of Diagonal
type.
It is an intent(in)
argument.
B
: Rank-2 array representation of the matrix .
Convert a Diagonal
matrix to a rank-2 array.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Input diagonal matrix. |
Output dense rank-2 array.
This interface overloads the det
interface from stdlib_linag
to
compute the determinant where is of type
Diagonal
.
d = det(A)
A
: Matrix of Diagonal
type.
It is in an intent(in)
argument.
d
: Determinant of the matrix.
Compute the determinant of a Diagonal
matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Input matrix. |
Determinant of the matrix.
This interface overloads the eigh
interface from stdlib_linalg
to compute the eigenvalues and eigenvectors of a real-valued matrix
whose type is Diagonal
.
call eigh(A, lambda [, vectors])
A
: real
-valued matrix of Diagonal
.
It is an intent(in)
argument.
lambda
: Rank-1 real
array returning the eigenvalues of A
in increasing order. It is an intent(out)
argument.
vectors
(optional) : Rank-2 array of the same kind as A
returning the eigenvectors of A
. It is
an intent(out)
argument.
Utility function to compute the eigenvalues and eigenvectors of
a Diagonal
matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Input matrix. |
||
real(kind=dp), | intent(out), | allocatable | :: | lambda(:) |
Eigenvalues. |
|
real(kind=dp), | intent(out), | optional, | allocatable | :: | vectors(:,:) |
Eigenvectors. |
This interface overloads the eigvalsh
interface from
stdlib_linalg
to compute the eigenvalues of a real-valued matrix
whose type is Diagonal
.
lambda = eigvalsh(A)
A
: real
-valued matrix of Diagonal
type.
It is an intent(in)
argument.
lambda
: Vector of eigenvalues in increasing order.
Utility function to compute the eigenvalues of a real Diagonal
matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Input matrix. |
Eigenvalues.
This interface overloads the Fortran intrinsic matmul
for a
Diagonal
matrix, both for matrix-vector and matrix-matrix
products. For a matrix-matrix product , only the matrix
has to be a Diagonal
matrix. Both and
need to be standard Fortran rank-2 arrays. All the underlying
functions are defined as pure
.
y = matmul(A, x)
Compute the matrix-vector product for a Diagonal
matrix . Both x
and y
are rank-1 arrays with the same
kind as A
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Input matrix. |
||
real(kind=dp), | intent(in) | :: | x(:) |
Input vector. |
Output vector.
Compute the matrix-matrix product for a Diagonal
matrix and a dense matrix (rank-2 array). is
also a rank-2 array with the same dimensions as .
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Input matrix. |
||
real(kind=dp), | intent(in) | :: | X(:,:) |
Input vectors. |
Output vectors.
Utility function to perform a scalar multiplication with a
Diagonal
matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A | |||
real(kind=dp), | intent(in) | :: | alpha |
Utility function to perform a scalar multiplication with a
Diagonal
matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=dp), | intent(in) | :: | alpha | |||
type(Diagonal), | intent(in) | :: | A |
Utility function to get the shape of a Diagonal
matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Input matrix. |
Shape of the matrix.
Utility function to return the size of Diagonal
matrix along a
given dimension.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Input matrix. |
||
integer(kind=ilp), | intent(in), | optional | :: | dim |
Queried dimension. |
Size of the matrix along the dimension dim.
This interface overloads the solve
interface from stdlib_linalg
for solving a linear system where is a
Diagonal
matrix. It also enables to solve a linear system with
multiple right-hand sides.
x = solve(A, b)
A
: Matrix of Diagonal
type. It is an intent(in)
argument.
b
: Rank-1 or rank-2 array defining the right-hand side(s).
It is an intent(in)
argument.
x
: Solution of the linear system. It has the same type and
shape as b
.
Solve the linear system where is of type
Diagonal
and B
a standard rank-2 array. The solution matrix
X
has the same dimensions and kind as the right-hand side
matrix B
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Coefficient matrix. |
||
real(kind=dp), | intent(in) | :: | B(:,:) |
Right-hand side vectors. |
Solution vectors.
Solve the linear system where is of type
Diagonal
and b
a standard rank-1 array. The solution vector
x
has the same dimension and kind as the right-hand side
vector b
.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Coefficient matrix. |
||
real(kind=dp), | intent(in) | :: | b(:) |
Right-hand side vector. |
Solution vector.
This interface overloads the svd
interface from stdlib_linalg
to compute the the singular value decomposition of a Diagonal
matrix .
call svd(A, s [, u] [, vt])
A
: Matrix of Diagonal
type.
It is an intent(in)
argument.
s
: Rank-1 real
array returning the singular values
of A
. It is an intent(out)
argument.
u
(optional) : Rank-2 array of the same kind as A
returning
the left singular vectors of A
as columns. Its
size should be [n, n]
. It is an intent(out)
argument.
vt
(optional) : Rank-2 array of the same kind as A
returning
the right singular vectors of A
as rows. Its
size should be [n, n]
. It is an intent(out)
argument.
Compute the singular value decomposition of a Diagonal
matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Input matrix. |
||
real(kind=dp), | intent(out), | optional, | allocatable | :: | u(:,:) |
Left singular vectors as columns. |
real(kind=dp), | intent(out), | allocatable | :: | s(:) |
Singular values in descending order. |
|
real(kind=dp), | intent(out), | optional, | allocatable | :: | vt(:,:) |
Right singular vectors as rows. |
This interface overloads the svdvals
interface from
stdlib_linalg
to compute the singular values of a Diagonal
matrix .
s = svdvals(A)
A
: Matrix of Diagonal
type.
It is an intent(in)
argument.
s
: Vector of singular values sorted in decreasing order.
Compute the singular values of a Diagonal
matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Input matrix. |
Singular values in descending order.
This interface overloads the trace
interface from stdlib_linalg
to compute the trace of a matrix of type Diagonal
.
tr = trace(A)
A
: Matrix of Diagonal
type.
It is an intent(in)
argument.
tr
: Trace of the matrix.
Compute the trace of a Diagonal
matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
type(Diagonal), | intent(in) | :: | A |
Input matrix. |
Trace of the matrix.
This interface overloads the Fortran intrinsic
procedure to define
the transpose operation for a Diagonal
matrix.
B = transpose(A)
A
: Matrix of Diagonal
type.
It is an intent(in)
argument.
B
: Resulting transposed matrix. It is of the same type as A
.
Base type used to define a Diagonal
matrix of size [n x n]
with diagonal elements given by the rank-1 array dv
.
This interface provides different methods to construct a Diagonal
matrix. Only the diagonal elements of are being stored, i.e.
private pure, module function construct (dv) | Utility function to construct a |
private pure, module function construct_constant (d, n) | Utility function to construct a |
private module function dense_to_diag (A) | Utility function to construct a |
private pure, module function initialize (n) | Utility function to construct a |