module specialmatrices_diagonal use stdlib_linalg_constants, only: dp, ilp implicit none private ! --> Linear Algebra. public :: transpose public :: det, trace public :: matmul public :: inv public :: solve public :: svd, svdvals public :: eigh, eigvalsh ! --> Utility functions. public :: dense public :: shape public :: size public :: operator(*) !---------------------------------------------------- !----- Base types for Diagonal matrices ----- !---------------------------------------------------- type, public :: Diagonal !! Base type used to define a `Diagonal` matrix of size `[n x n]` !! with diagonal elements given by the rank-1 array `dv`. private integer(ilp) :: n !! Dimension of the matrix. real(dp), allocatable :: dv(:) !! Diagonal elements of the matrix. end type !-------------------------------- !----- Constructors ----- !-------------------------------- interface Diagonal !! This interface provides different methods to construct a `Diagonal` !! matrix. Only the diagonal elements of \( A \) are being stored, i.e. !! !! \[ !! A !! = !! \begin{bmatrix} !! d_1 \\ !! & d_2 \\ !! & & \ddots \\ !! & & & d_n !! \end{bmatrix}. !! \] !! !! #### Syntax !! !! - Construct a `Diagonal` matrix filled with zeros: !! !! ```fortran !! integer, parameter :: n = 100 !! type(Diagonal) :: A !! !! A = Diagonal(n) !! ``` !! !! - Construct a `Diagonal` matrix from a vector. !! !! ```fortran !! integer, parameter :: n = 100 !! real(dp), allocatable :: dv(:) !! type(Diagonal) :: A !! integer :: i !! !! dv = [(i, i=1, n)]; A = Diagonal(dv) !! ``` !! !! - Construct a `Diagonal` matrix with constant diagonal element. !! !! ```fortran !! integer, parameter :: n = 100 !! real(dp), parameter :: d = 2.0_dp !! type(Diagonal) :: A !! !! A = Diagonal(d, n) !! ``` !! !! - Construct a `Diagonal` matrix from a standard rank-2 array. !! !! ```fortran !! integer, parameter :: n = 100 !! real(dp) :: B(n, n) !! type(Diagonal) :: A !! !! call random_number(B); A = Diagonal(B) !! ``` !! @note !! Only `double precision` is currently supported for this matrix type. !! @endnote pure module function initialize(n) result(A) !! Utility function to construct a `Diagonal` matrix filled with !! zeros. integer(ilp), intent(in) :: n !! Dimension of the matrix. type(Diagonal) :: A !! Corresponding diagonal matrix. end function initialize pure module function construct(dv) result(A) !! Utility function to construct a `Diagonal` matrix from a rank-1 !! array. real(dp), intent(in) :: dv(:) !! Diagonal elements of the matrix. type(Diagonal) :: A !! Corresponding diagonal matrix. end function construct pure module function construct_constant(d, n) result(A) !! Utility function to construct a `Diagonal` matrix with constant !! diagonal element. real(dp), intent(in) :: d !! Constant diagonal element of the matrix. integer(ilp), intent(in) :: n !! Dimension of the matrix. type(Diagonal) :: A !! Corresponding diagonal matrix. end function construct_constant module function dense_to_diag(A) result(B) !! Utility function to construct a `Diagonal` matrix from a rank-2 !! array. The resulting matrix is constructed from the diagonal !! element of the input matrix, even if the latter is not diagonal. real(dp), intent(in) :: A(:, :) !! Dense \(n \times n\) matrix from which to construct the !! `Diagonal` one. type(Diagonal) :: B !! Corresponding diagonal matrix. end function dense_to_diag end interface !------------------------------------------------------------------- !----- Matrix-vector and Matrix-matrix multiplications ----- !------------------------------------------------------------------- interface matmul !! This interface overloads the Fortran intrinsic `matmul` for a !! `Diagonal` matrix, both for matrix-vector and matrix-matrix !! products. For a matrix-matrix product \( C = AB \), only the matrix !! \( A \) has to be a `Diagonal` matrix. Both \( B \) and \( C \) !! need to be standard Fortran rank-2 arrays. All the underlying !! functions are defined as `pure`. !! !! #### Syntax !! !! ```fortran !! y = matmul(A, x) !! ``` pure module function spmv(A, x) result(y) !! Compute the matrix-vector product \(y = Ax\) for a `Diagonal` !! matrix \(A\). Both `x` and `y` are rank-1 arrays with the same !! kind as `A`. type(Diagonal), intent(in) :: A !! Input matrix. real(dp), intent(in) :: x(:) !! Input vector. real(dp), allocatable :: y(:) !! Output vector. end function pure module function spmvs(A, X) result(Y) !! Compute the matrix-matrix product \(Y = AX\) for a `Diagonal` !! matrix \(A\) and a dense matrix \(X\) (rank-2 array). \(Y\) is !! also a rank-2 array with the same dimensions as \(X\). type(Diagonal), intent(in) :: A !! Input matrix. real(dp), intent(in) :: X(:, :) !! Input vectors. real(dp), allocatable :: Y(:, :) !! Output vectors. end function end interface !----------------------------------------------- !----- Linear systems of equations ----- !----------------------------------------------- interface solve !! This interface overloads the `solve` interface from `stdlib_linalg` !! for solving a linear system \( Ax = b \) where \( A \) is a !! `Diagonal` matrix. It also enables to solve a linear system with !! multiple right-hand sides. !! !! #### Syntax !! !! ```fortran !! x = solve(A, b) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Diagonal` type. It is an `intent(in)` argument. !! !! - `b` : Rank-1 or rank-2 array defining the right-hand side(s). !! It is an `intent(in)` argument. !! !! - `x` : Solution of the linear system. It has the same type and !! shape as `b`. pure module function solve_single_rhs(A, b) result(x) !! Solve the linear system \(Ax=b\) where \(A\) is of type !! `Diagonal` and `b` a standard rank-1 array. The solution vector !! `x` has the same dimension and kind as the right-hand side !! vector `b`. type(Diagonal), intent(in) :: A !! Coefficient matrix. real(dp), intent(in) :: b(:) !! Right-hand side vector. real(dp), allocatable :: x(:) !! Solution vector. end function pure module function solve_multi_rhs(A, b) result(x) !! Solve the linear system \(AX=B\) where \(A\) is of type !! `Diagonal` and `B` a standard rank-2 array. The solution matrix !! `X` has the same dimensions and kind as the right-hand side !! matrix `B`. type(Diagonal), intent(in) :: A !! Coefficient matrix. real(dp), intent(in) :: B(:, :) !! Right-hand side vectors. real(dp), allocatable :: X(:, :) !! Solution vectors. end function end interface interface inv pure module function inv_rdp(A) result(B) !! Utility function to compute the inverse of a `Diagonal` matrix. type(Diagonal), intent(in) :: A !! Input matrix. type(Diagonal) :: B !! Inverse of `A`. end function end interface !----------------------------------------- !----- Determinant and Trace ----- !----------------------------------------- interface det !! This interface overloads the `det` interface from `stdlib_linag` to !! compute the determinant \(\det(A)\) where \(A\) is of type !! `Diagonal`. !! !! #### Syntax !! !! ```fortran !! d = det(A) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Diagonal` type. !! It is in an `intent(in)` argument. !! !! - `d` : Determinant of the matrix. pure module function det_rdp(A) result(d) !! Compute the determinant of a `Diagonal` matrix. type(Diagonal), intent(in) :: A !! Input matrix. real(dp) :: d !! Determinant of the matrix. end function end interface interface trace !! This interface overloads the `trace` interface from `stdlib_linalg` !! to compute the trace of a matrix \( A \) of type `Diagonal`. !! !! #### Syntax !! !! ```fortran !! tr = trace(A) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Diagonal` type. !! It is an `intent(in)` argument. !! !! - `tr`: Trace of the matrix. pure module function trace_rdp(A) result(tr) !! Compute the trace of a `Diagonal` matrix. type(Diagonal), intent(in) :: A !! Input matrix. real(dp) :: tr !! Trace of the matrix. end function end interface !------------------------------------------------ !----- Singular Value Decomposition ----- !------------------------------------------------ interface svdvals !! This interface overloads the `svdvals` interface from !! `stdlib_linalg` to compute the singular values of a `Diagonal` !! matrix \(A\). !! !! #### Syntax !! !! ```fortran !! s = svdvals(A) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Diagonal` type. !! It is an `intent(in)` argument. !! !! - `s` : Vector of singular values sorted in decreasing order. pure module function svdvals_rdp(A) result(s) !! Compute the singular values of a `Diagonal` matrix. type(Diagonal), intent(in) :: A !! Input matrix. real(dp), allocatable :: s(:) !! Singular values in descending order. end function end interface interface svd !! This interface overloads the `svd` interface from `stdlib_linalg` !! to compute the the singular value decomposition of a `Diagonal` !! matrix \(A\). !! !! #### Syntax !! !! ```fortran !! call svd(A, s [, u] [, vt]) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Diagonal` type. !! It is an `intent(in)` argument. !! !! - `s` : Rank-1 `real` array returning the singular values !! of `A`. It is an `intent(out)` argument. !! !! - `u` (optional) : Rank-2 array of the same kind as `A` returning !! the left singular vectors of `A` as columns. Its !! size should be `[n, n]`. It is an `intent(out)` !! argument. !! !! - `vt` (optional) : Rank-2 array of the same kind as `A` returning !! the right singular vectors of `A` as rows. Its !! size should be `[n, n]`. It is an `intent(out)` !! argument. module subroutine svd_rdp(A, u, s, vt) !! Compute the singular value decomposition of a `Diagonal` matrix. type(Diagonal), intent(in) :: A !! Input matrix. real(dp), allocatable, intent(out) :: s(:) !! Singular values in descending order. real(dp), allocatable, optional, intent(out) :: u(:, :) !! Left singular vectors as columns. real(dp), allocatable, optional, intent(out) :: vt(:, :) !! Right singular vectors as rows. end subroutine end interface !-------------------------------------------- !----- Eigenvalue Decomposition ----- !-------------------------------------------- interface eigvalsh !! This interface overloads the `eigvalsh` interface from !! `stdlib_linalg` to compute the eigenvalues of a real-valued matrix !! \( A \) whose type is `Diagonal`. !! !! #### Syntax !! !! ```fortran !! lambda = eigvalsh(A) !! ``` !! !! #### Arguments !! !! - `A` : `real`-valued matrix of `Diagonal` type. !! It is an `intent(in)` argument. !! !! - `lambda` : Vector of eigenvalues in increasing order. module function eigvalsh_rdp(A) result(lambda) !! Utility function to compute the eigenvalues of a real `Diagonal` !! matrix. type(Diagonal), intent(in) :: A !! Input matrix. real(dp), allocatable :: lambda(:) !! Eigenvalues. end function end interface interface eigh !! This interface overloads the `eigh` interface from `stdlib_linalg` !! to compute the eigenvalues and eigenvectors of a real-valued matrix !! \(A\) whose type is `Diagonal`. !! !! #### Syntax !! !! ```fortran !! call eigh(A, lambda [, vectors]) !! ``` !! !! #### Arguments !! !! - `A` : `real`-valued matrix of `Diagonal`. !! It is an `intent(in)` argument. !! !! - `lambda` : Rank-1 `real` array returning the eigenvalues of `A` !! in increasing order. It is an `intent(out)` argument. !! !! - `vectors` (optional) : Rank-2 array of the same kind as `A` !! returning the eigenvectors of `A`. It is !! an `intent(out)` argument. module subroutine eigh_rdp(A, lambda, vectors) !! Utility function to compute the eigenvalues and eigenvectors of !! a `Diagonal` matrix. type(Diagonal), intent(in) :: A !! Input matrix. real(dp), allocatable, intent(out) :: lambda(:) !! Eigenvalues. real(dp), allocatable, optional, intent(out) :: vectors(:, :) !! Eigenvectors. end subroutine end interface !------------------------------------- !----- Utility functions ----- !------------------------------------- interface dense !! This interface provides methods to convert a `Diagonal` matrix to a !! regular rank-2 array. !! !! #### Syntax !! !! ```fortran !! B = dense(A) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Diagonal` type. !! It is an `intent(in)` argument. !! !! - `B` : Rank-2 array representation of the matrix \( A \). module function dense_rdp(A) result(B) !! Convert a `Diagonal` matrix to a rank-2 array. type(Diagonal), intent(in) :: A !! Input diagonal matrix. real(dp), allocatable :: B(:, :) !! Output dense rank-2 array. end function end interface interface transpose !! This interface overloads the Fortran `intrinsic` procedure to define !! the transpose operation for a `Diagonal` matrix. !! !! #### Syntax !! !! ```fortran !! B = transpose(A) !! ``` !! !! #### Arguments !! !! - `A` : Matrix of `Diagonal` type. !! It is an `intent(in)` argument. !! !! - `B` : Resulting transposed matrix. It is of the same type as `A`. pure module function transpose_rdp(A) result(B) !! Utility function to compute the transpose of a `Diagonal` matrix. type(Diagonal), intent(in) :: A !! Input matrix. type(Diagonal) :: B !! Transpose of the matrix. end function end interface interface size pure module function size_rdp(A, dim) result(arr_size) !! Utility function to return the size of `Diagonal` matrix along a !! given dimension. type(Diagonal), intent(in) :: A !! Input matrix. integer(ilp), optional, intent(in) :: dim !! Queried dimension. integer(ilp) :: arr_size !! Size of the matrix along the dimension dim. end function end interface interface shape pure module function shape_rdp(A) result(arr_shape) !! Utility function to get the shape of a `Diagonal` matrix. type(Diagonal), intent(in) :: A !! Input matrix. integer(ilp) :: arr_shape(2) !! Shape of the matrix. end function end interface interface operator(*) pure module function scalar_multiplication_rdp(alpha, A) result(B) !! Utility function to perform a scalar multiplication with a !! `Diagonal` matrix. real(dp), intent(in) :: alpha type(Diagonal), intent(in) :: A type(Diagonal) :: B end function scalar_multiplication_rdp pure module function scalar_multiplication_bis_rdp(A, alpha) result(B) !! Utility function to perform a scalar multiplication with a !! `Diagonal` matrix. type(Diagonal), intent(in) :: A real(dp), intent(in) :: alpha type(Diagonal) :: B end function scalar_multiplication_bis_rdp end interface end module