Base type used to define a Tridiagonal matrix of size [n, n]
with diagonals given by rank-1 arrays dl (size n), dv
(size n-1) and du (size n-1).
This interface provides different methods to construct a
Tridiagonal matrix. Only the non-zero elements of are
stored, i.e.
Tridiagonal matrix filled with zeros: integer, parameter :: n = 100
type(Tridiagonal) :: A
A = Tridiagonal(n)
Tridiagonal matrix from rank-1 arrays: integer, parameter :: n
real(dp), allocatable :: dl(:), dv(:), du(:)
type(Tridiagonal) :: A
integer :: i
dl = [(i, i=1, n-1)]; dv = [(2*i, i=1, n)]; du = [(3*i, i=1, n)]
A = Tridiagonal(dl, dv, du)
Tridiagonal matrix with constant diagonals: integer, parameter :: n
real(dp), parameter :: a = 1.0_dp, b = 1.0_dp, c = 2.0_dp
type(Tridiagonal) :: A
A = Tridiagonal(a, b, c, n)
Note
Only double precision is currently supported for this matrix type.
Construct a Tridiagonal matrix from the rank-1 arrays dl,
dv and du.
| Type | Intent | Optional | Attributes | Name | ||
|---|---|---|---|---|---|---|
| real(kind=dp), | intent(in) | :: | dl(:) |
Tridiagonal elements of the matrix. |
||
| real(kind=dp), | intent(in) | :: | dv(:) |
Tridiagonal elements of the matrix. |
||
| real(kind=dp), | intent(in) | :: | du(:) |
Tridiagonal elements of the matrix. |
Tridiagonal matrix.
Construct a Tridiagonal matrix with constant diagonal elements.
| Type | Intent | Optional | Attributes | Name | ||
|---|---|---|---|---|---|---|
| real(kind=dp), | intent(in) | :: | dl |
Tridiagonal elements of the matrix. |
||
| real(kind=dp), | intent(in) | :: | dv |
Tridiagonal elements of the matrix. |
||
| real(kind=dp), | intent(in) | :: | du |
Tridiagonal elements of the matrix. |
||
| integer(kind=ilp), | intent(in) | :: | n |
Dimension of the matrix. |
Tridiagonal matrix.
Construct a Tridiagonal matrix filled with zeros.
| Type | Intent | Optional | Attributes | Name | ||
|---|---|---|---|---|---|---|
| integer(kind=ilp), | intent(in) | :: | n |
Dimension of the matrix. |
Tridiagonal matrix.